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We examine the assertion that the "reduction of the wave packet/* implicit in the quantum theory of 
measurement introduces into the foundations of quantum physics a time-asymmetric element, which in 
turn leads to irreversibility. We argue that this time asymmetry is actually related to the manner in which 
statistical ensembles are constructed. If we construct an ensemble time symmetrically by using both initial 
and final states of the system to delimit the sample, then the resulting probability distribution turns out to 
be time symmetric as well. The conventional expressions for prediction as well as those for "retrodiction" 
may be recovered from the time-symmetric expressions formally by separating the final (or the initial) 
selection procedure from the measurements under consideration by sequences of "coherence destroying" 
manipulations. We can proceed from this situation, which resembles prediction, to true prediction (which 
does not involve any postselection) by adding to the time-symmetric theory a postulate which asserts that 
ensembles with unambiguous probability distributions may be constructed on the basis of preselection only. 
If, as we believe, the validity of this postulate and the falsity of its time reverse result from the macro­
scopic irreversibility of our universe as a whole, then the basic laws of quantum physics, including those 
referring to measurements, are as completely time symmetric as the laws of classical physics. As a by-product 
of our analysis, we also find that during the time interval between two noncommuting observations, we may 
assign to a system the quantum state corresponding to the observation that follows with as much justification 
as we assign, ordinarily, the state corresponding to the preceding measurement. 

I. INTRODUCTION 

ONE of the perennially challenging problems of 
theoretical physics is that of the "arrow of time." 

Everyday experience teaches us that the future is 
qualitatively different from the past, that our practical 
powers of prediction differ vastly from those of memory, 
and that complex physical systems tend to develop in 
the course of time in patterns distinct from those of 
their antecedents. On the other hand, all the "micro­
scopic" laws of physics ever seriously propounded and 
widely accepted are entirely symmetric with respect 
to the direction of time; they are form-invariant with 
respect to time reversal, '̂̂  

The de facto absence of time symmetry in nature 
enters the formal statement of the laws of nature 
principally in two areas. One of these is thermo­
dynamics, particularly the second law of thermo­
dynamics; the latter proclaims that the entropy of a 
thermally isolated system can only increase toward the 
future. The other area is that of cosmogony; our 
universe is expanding toward the future. Gold^ has 
suggested that these two asymmetric phenomena may 
well be causally related to each other. A third time-
asymmetric effect, the preponderance of outgoing 
radiation in nature over incoming radiation, may be 
considered to be a special aspect of the second law. 

In quantum theory the dynamical laws of motion, 
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1 T. Gold, in Onzieme Conseil de ITnstitut International de 
Physique Solvay, La Structure et rEvolution de V Universe (Edition 
Stoops, Brussels, 1958), p. 81; Am. J. Phys. 30, 403 (1962); 
Proceedings of the Conference on the Arrow of Time, Cornell 
University, 1963 (to be published). 

2 See, however, O. Penrose and I. C. Percival, Proc. Phys. Soc. 
(London) 79, 605 (1962). 

either the Schrodinger or the Heisenberg equations, 
are time symmetric as are their classical counterparts, 
Hamilton's equations of motion. It has been suggested, 
though, that asymmetry in the direction of time, and 
even thermodynamic irreversibility, enters into quan­
tum theory through the theory of measurement.^''* Any 
measurement performed on a quantum system changes 
its state discontinuously and in a manner not to be 
described by the Schrodinger or Heisenberg equations 
of the isolated system. The performance of a measure­
ment leads to the "reduction of the wave packet." That 
is to say, if the result of the measurement is known, 
then the quantum state of the system preceding the 
measurement has been replaced by the eigenvector of 
the observable that belongs to the eigenvalue recorded. 
If the outcome of the measurement is not known, the 
original state vector must now be replaced by a density 
matrix diagonal with respect to the eigenvectors of the 
observables measured, each diagonal element equaling 
the absolute square of the corresponding component of 
the original state vector. This density matrix is in-
equivalent to the original state vector in that all phase 
relations between the components have been destroyed 
by the act of measurement, though their norms survive 
in the density matrix. 

Quite aside from entropy considerations, the conven­
tional quantum theory of measurements is concerned 
exclusively with the prediction of probabilities of 
specific outcomes of future measurements on the basis 
of the results of earlier observations. Indeed the 
reduction of the wave packet has as its operational 

3 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics, transl. by R. T. Beyer (Princeton University Press, 
Princeton, 1955). 

^ D. Bohm, Quantum Theory (Prentice-Hall Inc., Englewood 
Cliffs, New Jersey, 1951), cf. in particular, p. 608. 
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contents nothing but this probabilistic connection 
between successive observations.^ 

In this paper we propose to examine the nature of the 
time symmetry in the quantum theory of measurement. 
Rather than delve into the measurement process itself, 
which involves a specialized interaction between the 
atomic system and a macroscopic device, ̂ ~̂  we shall 
simply accept the standard expressions for probabilities 
of values furnished by the conventional theory. Whereas 
the conventional theory deals with ensembles of 
quantum systems that have been ^'preselected" on the 
basis of some initial observation, we shall deduce from 
it probabiHty expressions that refer to ensembles that 
have been selected from combinations of data favoring 
neither past nor future. A theory that concerns itself 
exclusively with such symmetrically selected ensembles 
(the "time-symmetric theory'') will contain only time-
symmetric expressions for the probabilities of observa­
tions. Logically this time-symmetric theory is contained 
in the conventional theory but lacks one of the latter's 
postulates. I t will be developed in Sec. I I . 

In Sec. I l l we shall consider the case that prior to the 
final selection some observations are performed that 
completely destroy coherence of any state previously 
existing; we shall find that any earHer observations 
obey probability laws that formally resemble the 
conventional prediction formula. Likewise, if the initial 
selection ("preselection") is followed by coherence 
destroying measurements to be succeeded in turn by 
some other observations, then these latter observations 
obey the precise time-reflected expression of the 
conventional prediction formula. This reflected relation­
ship might be called a "retrodiction" formula. Finally, 
in Sec. IV we shall return to the true prediction and 
"retrodiction" situations, i.e., to the consideration of 
ensembles that have been either strictly preselected or 
postselected. By adding to the time-symmetric theory 
one postulate that appears to portray accurately the 
conditions of our universe (and whose time-reflected 
proposition does not hold), we are able to recover the 
conventional asymmetric theory. We present an argu­
ment that this asymmetry represents the intrusion of 
the irreversibility of macroscopic processes into the 
microscopic domain, so that the totality of the basic 
(microscopic) laws of nature emerges completely time 
symmetric. 

II. SEQUENCES OF OBSERVATIONS 

We shall begin by considering systems which are 
subjected to sequences of measurements, each of which 
is individually "complete"; that is to say, that each 
observation determines a quantum state of the system. 
We make the conventional assumption about the 
selection of ensembles of such systems (and of their 
histories), which is to the effect that initially all systems 
of the ensemble have yielded a specified nondegenerate 
eigenvalue of an observable / ; no other conditions are 

^ K. P, Wigner, Am. J. Phys. 31, 6 (1963). 

imposed. Under these circumstances the conventional 
quantum theory of measurements states that, given 
two successive measurements, the probabiHty of a 
particular outcome of the later observation depends on 
the outcome of the earlier observation by being the 
absolute square of the scalar product of the two state-
vectors belonging to the two respective eigenvalues. 
We shall denote the observables to be measured by sym­
bols Ai, A2, ' • 'y Ak, • • •, all of whose eigenvalues are 
nondegenerate; let the eigenvalues of ^A; be denoted 
by dk. Only when necessary will distinct eigenvalues of 
Ajc be denoted by Greek superscripts dk'''^\ dk^^\ • • •. 
For the sake of simplicity we shall work in a Heisenberg 
representation and assume further that all the Ak are 
constants of the motion, not necessarily explicitly time-
independent. At any rate, between measurements both 
the quantum, states of our systems and the matrix 
elements of our observables will be constant. If the 
observables Ak are to be measured in any particular 
sequence, which, in general, will not correspond to the 
order of the subscripts - - -, k, • • •, we shall indicate 
the sequence of measurements by Latin superscripts, 
thus: Ak"^. 

Suppose now that we perform a sequence of observa­
tions, Ajn~^, ''', Ai^~^, yielding the measurements 
dmj • • •, di; then the probability that the next measure­
ment Ak^' will yield the eigenvalue ^A; is 

p(dk/dmr • 'A)=\(di\dk)\'=Tv(DiDk), (2.1) 

where the symbol Dk denotes the idempotent operator 

Dk^\dk){dk\, (2.2) 

etc. If the measurement Ak^' is to be followed by 
Ai^'+\ An'-^^ '", Ar^~\ As^, the probability that the 
respective outcomes will be dk, di, • • •, dr, ds is 

P(dkj' • • idrjds/dm,' ' ' ,di) 

= Tr (AZ>. • • • DkDiDk --Dr), (2.3) 

Equations (2.1) and (2.3) hold irrespective of the out­
come of the measurements A m~^, • • *, A jj~^, and 
irrespective of the outcome of the members of the 
ensemble subsequent to the performance of the specified 
observation (s). These expressions summarize the 
quantitative content of the conventional theory of 
measurement in quantum physics. 

In passing let us briefly comment on the need in 
quantum theory for constructing ensembles with well-
defined probability characteristics. If, in classical 
mechanics, we had to deal with a system possessing a 
phase space with a finite volume 0, then we could define 
an a priori probability density on that phase space that 
would be invariant with respect to canonical trans­
formations: the constant probability density 0~^ One 
could then modify this density in conformity with any 
restrictions imposed on the physical system, so as to 
obtain contingency probabilities by purely deductive 
methods. In other words, in a finite phase space one 
might construct statistical mechanics employing a 
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standard ensemble as the point of departure. Because 
in every realistic physical system the phase space has 
an infinite volume, a transformation-invariant standard 
probability density does not exist, and one is led into 
constructing or conjecturing probability distributions 
to fit various conditions imposed on the ensemble. 

The situation in quantum theory is analogous. If 
Hilbert space were finite-dimensional, then there 
would be one density matrix distinguished as being 
representation-invariant, the normalized multiple of 
the unit matrix, from which all other density matrices 
could be derived in response to various contingencies. 
But again, for all realistic physical systems Hilbert 
space is infinite-dimensional; hence, there is no 
^^standard ensemble" existing a priori and independ­
ently of any information about our physical system. 
Thus, formally, we are forced to construct ensembles 
of systems having certain restrictive properties. 
Whether particular classes of restrictions lead to en­
sembles with unambiguous probability characteristics 
cannot be decided affirmatively by formal analysis alone, 
though internal inconsistencies might rule out some 
conjectures. I t is clear that the assumptions underlying 
the conventional theory of quantum measurements are 
logically admissible. 

Next we shall consider a sequence of measurements 
/ , ^ r A - 1 yd .0 J ,1 A ', An^, F, in that 
order. J and F are to be nondegenerate observables 
like the others, and their eigenvalues are denoted 
respectively by a and b. We shall now consider an 
ensemble of systems whose initial and final states are 
fixed to correspond to the particular eigenvalues a and b, 
respectively; we ask for the probability that the out­
come of the intervening measurements are dj, • • •, 
dn, respectively. This probability, on the strength of 
Eq. (2.3), is found to be 

p{dj,'",dn/a,b) = 
p{dh"'Anfi/a) 

pih/a) 

H{a,b) 
Ti(ADj""DnBDn"'Dj), 

where 

Hia,b) = Zj 
A=\a){a\, B=\b){b\. 

(2.4) 

(2.5) 

This expression is manifestly time symmetric. If 
we change the sequence of measurements to F, 

Ak^, / , Eqs. (2.4), (2.5) remain unchanged. 
In the exceptional case H{afi) = 0 the probability 
p{dj' • -dn/afi) is not defined. 

The probabilities (2.4), (2.5) refer to a sample that 
has been selected on the basis of required outcomes of 
specified initial and final observations. This procedure 
may appear artificial compared to the usual prescrip­
tion: 'Trepare a system so that the value of / (at the 
beginning) be a." But from a formal point of view we 
may legitimately specify any selection that could be 
performed with physical equipment, however complex. 

As a matter of fact, in experimental physics selec­
tions are frequently based on combinations of initial 
and final characteristics. Consider a beam of particles 
that enters a cloud chamber or similar device controlled 
by a master pulse. For the device to select an event as 
belonging to a sample to be evaluated statistically, the 
particle must enter the chamber and, prior to the onset 
of any manipulation by magnetic fields, etc., satisfy 
certain requirements. But in order to be counted the 
particle must also activate the circuits of counters 
placed below the chamber; thus, we make the selection 
on the basis of both the initial and the final state. In 
some experiments even intermediate specifications may 
be imposed in addition to initial and final conditions. 
Thus, our formal treatment of initial and final states on 
an equivalent footing is not inconsistent with experi­
mental procedures used in some investigations. 

Equations (2.4), (2.5) may be thought of as providing 
the foundation for a time-symmetric theory of measure­
ment. If we assumed the existence of ensembles with 
well-defined probabilities only if selected on the basis 
of both initial and final states, we should have a logically 
closed theory, though one that would never permit 
extrapolations to time intervals lying outside the 
interstice between initial and final determination. Given 
ensembles of any kind with well-defined probability 
dispersions, we can always form subensembles obeying 
additional restrictions and hence the time-symmetric 
ensembles can be obtained from those of the conven­
tional theory by means of a deductive process. The 
reverse does not hold, i.e., we cannot infer the character­
istics of broadly defined ensembles from those of more 
narrowly defined ensembles. 

On the basis of Eqs. (2.4), (2.5) we may calculate 
probabilities involving only some of the measurements 
between / and F, or we may calculate contingent 
probabilities referring to partial samples in which the 
outcomes of some of these measurements are fixed. In 
particular we can calculate the contingent probability 
of the outcome Jjr̂  given the outcome di^. To obtain 
this probabiHty we must, of course, sum over all the 
possible outcomes of the measurements preceding Ai^ 
and over all the possible outcomes following A ^, 
keeping, as before, the outcomes of / and F fixed. 
The result is 

p(di/d,;a,h) = 
E r E m - • - E n ' TriD^Dl^Dm'-- 'Dn'BDn'" 'Dm'Dir) 

E m ' " - E n ' -TxiDlDr.'" 'Dn'BDn'" 'Dr.') 
\{di\di)V 

ZV" -En ' Tl(DiDirDm'" 'B' ' 'Dm'Dv) 
(2.6) 
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As expected, the history preceding the measurement 
Ai^ drops out of our expression, but the coefficient of the 
squared matrix element of the conventional prediction 
(2.1) is sensitive to di and to di as well as to the sub­
sequent history. In other words, postselection will affect 
the transition probability from di to di. That this is 
unavoidable can be understood easily by the considera­
tion of the extreme case in which all observables 
Am, ''', An, F commute with each other as well as with 
A I. Depending on the selection of the eigenvalue bj the 
transition probabiHty in that case will be either 0 or 1. 

I t is obvious that the time-reflected relationship to 
(2.6) also holds. That is to say, if we calculate the 
contingent probability of di knowing the outcome di of 
the observation immediately following, we shall obtain 
an expression that is independent of the whole history 
subsequent to the measurement A i^, but which will de­
pend on the initial selection a as well as observations 
scheduled prior to Ai^. 

Let us now consider incomplete measurements. The 
result (2.4), (2.5) can be generalized immediately if we 
drop the requirement that each intermediate measure­
ment be complete. According to von Neumann,^ an 
incomplete observation projects the initial state not on 
a particular direction but on a particular (multi­
dimensional) linear subspace of the Hilbert space, and 
may be represented by an idempotent operator Dt. 
The form of Eqs. (2.4), (2.5) will remain unchanged 
under this reinterpretation of the symbols Djc. I t 
should be noted, however, that Eq. (2.6) holds only if 
Ai is nondegenerate. 

The replacement of the initial and final states by 
mixtures is a bit more involved. If we form an ensemble 
in which histories beginning with state | a) and ending 
with state \b} form a fraction Cab of the whole 

Cah^Oj 23 5D â'?>'— 1) 

then the probability p(dj,' • ',dn/{c}) will be 

(2.7) 

Pidj,-- • A / { c } ) = Z L ca'i'pidj,- ••,dn/a',b'). (2.8) 

There exists no simple expression that would depend on 
the initial and final density matrices. The probabilities 
(2.8) depend on the fractions of systems within the 
ensemble passing from specified initial to specified final 
states, not merely on the initial distribution X)&' ^ab' 
and the final distribution X)a' ^a'6. 

III. ASYMPTOTIC PROCEDURES 

Whereas we have been able to obtain time-symmetric 
ensembles from those depending only on initial selec­
tion, the reverse procedure is impossible without an 
additional postulate; that is to say, given a theory of 
ensembles based on time-symmetric double-selection 
procedures, we cannot obtain probabihties for ensembles 
in which the selection is based only on initial (or only 
on final) observations by deduction alone. In this sense, 

the time-symmetric theory of Sec. I I is more restricted 
than the conventional theory of measurements. 

There is, however, a way to blunt the effects of either 
pre- or postselection. The method to be described in 
this section rests on the fact that in quantum theory 
the type of interference that we call an observation 
destroys the "coherence" of the state of a system, 
producing a new situation that is connected with the 
original situation only by stochastic laws. This stochastic 
connection, or the lack of a tighter relationship, may be 
expressed either in terms of the state vector, or its 
replacement by a density matrix, or purely in terms of 
probabilistic assertions. Whatever the mode of descrip­
tion, it is possible to sever different portions of the 
history of a system from each other by the interposition 
of certain types of measurements. By preceding the 
final selection in the time-symmetric theory by such 
"coherence destroying" manipulations, we may form­
ally recover the prediction formula (2.1); by scheduHng 
such procedures following the initial selection of a time-
symmetric ensemble, we may obtain the time-reverse 
of Eq. (2.1), a "retrodiction" formula. 

These possibilities are of considerable interest because 
they present us with a relatively large class of possible 
procedures all of which lead, asymptotically in most 
cases, to substantially similar results. Though the 
interpolation of coherence destroying manipulations, 
say before the act of final selection within the framework 
of the time-symmetric theory, does not relieve us of the 
logical necessity of performing the act of final selection, 
the particular choice of observable and of its numerical 
value used for that final selection has no effect on the 
probabilities of events preceding the coherence 
destroying acts. 

We shall first indicate particular sets of measurements 
which destroy coherence more or less completely. Such 
sets of two consecutive measurements may be con­
structed in closed form if the Hilbert space of a system 
is finite dimensional, e.g., if the particles in a mono­
chromatic and well-collimated beam can differ only in 
their states of polarization. Consider, in this case, two 
observables Ai and Aj whose eigenvectors are related 
to each other by a unitary matrix U and whose matrix 
elements all have the same absolute square 1/n, n being 
the number of dimensions of the Hilbert space. One 
possible unitary matrix with this property is, for 
instance, the following: 

U,i=l\/{nyi^y^^, e,i^{2ir/n)kL (3.1) 

Let us denote the idempotent operators to be con­
structed from the respective eigenvectors of the two 
observables by Di and Z>2, respectively, each of these 
symbols representing n such different operators. Then 
the following expression constructed with any density 
matrix M whatsoever is always a multiple of the unit 
matrix / : 

Ldi ' Ed. ' D{D^MD{D{= (l/n)I. (3.2) 
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As for the infinite-dimensional case, the situation is 
insofar more involved as there exists no density matrix 
which is precisely a multiple of the unit matrix. We 
shall assume that the Hilbert space admits a complete 
set of commuting operators, each having a continuous 
range of eigenvalues from — oo to GO . We shall call these 
operators Xg and construct by the usual methods a set 
of operators ps which satisfy standard canonical 
commutation relations with each other and with the Xs. 
In a somewhat symbolic sense the unitary operators 
leading from the improper joint eigenfunctions of the 
Xs to the improper joint eigenfunctions of the ps, i.e., 
the Fourier integral operators, possess matrix elements 
all of the same magnitude as in the previous case. In 
view of the fact that idempotent operators of the type 
x{xo), etc., are not really defined, we introduce idem-
potent operators X(x,A), defined as integral operators 
whose kernel equals 1 if xeA, and vanishes otherwise. 
We cover the space of numerical values of the Xs with a 
denumerable set of domains A without overlap. Simi­
larly, we introduce idempotent operators P(;^,E), where 
the domains E cover the momentum space without 
overlap. The expression constructed in complete analogy 
to (3.1) will then not equal a multiple of the unit matrix 
because of the coarseness of the cell structures estab­
lished in X space and in p space. However, we may 
establish a sensible limit if we improve the fineness of 
both cell structures and if we multiply the expression 
(3.1) on the left by a factor corresponding to the 
effective n, eventually becoming infinite, so that the 
right side can actually tend to the identity operator / 
(whose trace diverges). 

We now return to the expression (2.4) and substitute 
for a certain number of factors centered on F a multiple 
of / , both in the numerator and the denominator. The 
constant of proportionality used is immaterial, as it 
drops out in any case, and we might use / directly. We 
then see, almost by inspection, that (2.4) reduces to 
(2.3), the pure prediction formula, and, Hkewise, that 
(2.6) reduces to (2.1). We conclude, then, that because 
of the asymptotic properties of expressions of type (3.2) 
the prediction formulas may be recovered from the 
time-symmetric formulas. 

We may derive the corresponding "retrodiction'' 
expression by time reversing the procedure that we have 
just presented. If we follow the initial selection of an 
ensemble in the time-symmetric theory by a set of 
coherence-destroying measurements, then the outcome 
of subsequent observations is related to the final 
selection as follows: 

p(dkAr -A/(^,b) = Ti(DjcDi' • 'D.BDs' • -Di), (3.3) 

If, in particular, we are concerned with the one observa­
tion preceding the final selection, then the probability of 
the outcome d is 

pid/b)=\{b\d}\\ (3.4) 

The coherence destroying properties of the procedure 

summarized in Eqs. (3.1), (3.2), and of the correspond­
ing asymptotic procedure outlined for the infinite-
dimensional Hilbert space may be demonstrated by 
straightforward computation. I t would be of consider­
able interest if there were a broad range of procedures 
having the same effect. Generally, sequences of measure­
ments will destroy coherence to a greater or lesser extent 
provided that they involve all directions of Hilbert 
space in noncommuting measurements. There are, of 
course, degrees of noncommutativity: The noncom-
mutavity may involve varying numbers of directions 
in Hilbert space, and the eigendirections of consecutive 
operators may differ from each other by various angles. 
Formally, the extent to which coherence is destroyed by 
a given sequence may be evaluated in terms of the 
degree to which matrices of the general form (3.2) 
approximate a multiple of the unit matrix. That there 
is some approach to the unit matrix in a sequence of 
noncommuting measurements is assured by the results 
to be found in von Neumann.^ If Z} "̂̂  is a set of idem-
potent operators belonging to the same measurement 
and with properties 

J9(«)Z)(^) = 5a/3/̂ («)^ E « ^ ^ " ^ = / , (3.5) 

and if M is an arbitrary density matrix, then 

M'=ZaD^-^MD^^^ (3.6) 

is also a density matrix and approximates a multiple of 
the unit matrix / at least as well as M in the following 
respects: (a) If we define the entropy of M as usual by 
the expression 

6 ' = - ^ T r ( i l f InAf), (3.7) 

then 

y ^ 5 . (3.8) 

The equality holds only if the idempotent operators 
commute with M. (b) The range of eigenvalues of M^ is 
not greater than the range of eigenvalues of M; that is 
to say, the upper limit of its eigenvalues is not larger 
and the lower limit not smaller. Both entropy and 
range of eigenvalue spectrum are yardsticks for the 
approach to XJ, 

Thus, it appears that we can destroy coherence more 
or less completely by a wide variety of sequences of 
measurements and thereby obtain the asymptotic 
prediction and retrodiction situations within the frame­
work of the time-symmetric theory of measurements. 

The existence of the retrodiction formula (3.3), (3.4) 
suggests that the customary assignment of a state vector 
to a system on the basis of the most recent preceding 
observation may be somewhat arbitrary. This assign­
ment is based on the intuitive notion that the measure­
ment is the ^'cause'' and the quantum state the ''effect," 
and that cause must precede effect in time. Also, 
perhaps, there is the notion that the quantum state of 
a system embodies the maximum of information avail­
able to us about the system at any time; ordinarily, we 
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can know the outcome of ail observations in the past 
but not of those yet in the future. 

But, as we have seen, under suitable circumstances 
the usual prediction formula (2.1) may be replaced by 
the retrodiction formula (3.4), which bases a proba­
bilistic statement about the outcome of one measure­
ment on the outcome of the measurement next following 
in time. If the measurement of A (whose eigenvalues 
are being denoted by d) is preceded by coherence 
destroying operations as we have assumed in deriving 
Eqs. (3.3) and (3.4), then we know essentially nothing 
about the outcome of observations preceding A; that is 
to say, all possible outcomes of such preceding observa­
tions are approximately equally likely. Hence, our 
probabilistic statement about the outcome of the 
measurement of A is based primarily on the event 
immediately following, and the information on which 
our statement is based ought to be incorporated in an 
appropriate assignment of quantum state. Thus, we 
are led into assigning the state | b) to the period of time 
preceding the observation of F yielding the eigenvalue b. 

From a purely operational point of view, one might 
eschew the assignment of quantum states to physical 
systems altogether and instead rely entirely on proba-
biHstic statements referring to carefully defined en­
sembles. However, as long as one does assign quantum 
states to physical systems, it appears defensible to do 
so either in reliance on the (complete) observation 
immediately preceding (as is customary) or on the one 
next following, depending on circumstances. This 
ambiguity indicates that the quantum state of a 
system, though undoubtedly containing some elements 
of "reality" independent of any observer, also has 
subjective aspects. 

We shall conclude this section by pointing out that, 
in general, the dispersion of probabilities of the outcome 
of one particular observation will be minimized (i.e., 
the "negative entropy" associated with this dispersion 
will be maximized) if we use all information about the 
system's past and future. This statement is a direct 
consequence of the properties of the entropy function 
to be found, e.g., in Khinchin.^ Hence, if both the initial 
and final state of a system are known, use of the 
prediction formulas (2.1) or (2.3) instead of (2.4) will 
lead to a loss in precision of the probabilistic statement 
concerning the intermediate observation. 

IV. DIRECT PREDICTION 

By now we have established that the conventional 
prediction formulas can be recovered from the time-
symmetric expressions (2.4) by means of a model that 
consists of shielding events close at hand from the 
terminal selection on which (2.4) is based by the inter­
position of a series of "coherence destroying" experi-

^ A. I. Khinchin, Mathematical Foundations of Information 
Theory, transl. by R. A. Silverman and M. D. Friedman (Dover 
Publications, Inc., New York, 1957). 

ments. Each measurement constitutes an interference 
with the physical system which destroys in a limited 
and mathematically well-described manner its dynamic 
behavior as an isolated system. 

Normally, the prediction formula (2.1) and its 
corollary (2.3) are not conceived of as depending on 
carefully managed follow-up maneuvers, but are 
assumed to be independent of the subsequent history of 
the system. That this prediction theory is indeed 
logically independent of the time-S3rmmetric formula 
(2.4) may be deduced immediately from the circum­
stance that in our universe the prediction formula is 
considered to be universally valid, whereas the time-
reflected formula, the retrodiction formula, is not, 

Consider an ensemble of similar physical systems of 
arbitrary provenance and select a sample on the 
strength of a single complete measurement. The 
conventional theory of measurement then furnishes us, 
with respect to this selected subensemble, with relative 
frequencies of outcomes of a subsequent measurement 
or of a subsequent series of measurements, regardless of 
the events that may have preceded the initial selection 
procedure, as well as of those events that follow on the 
heels of the specified series of measurements, as long as 
no further selection is involved. The reverse theory 
would have to concern itself with the probability of the 
outcome of certain measurements on an ensemble of 
similar physical systems, the ensemble to be determined 
solely on the basis of a pure-state selection immediately 
following the specified series of measurements; the 
expression for the probabilities should contain no 
reference to any events following the terminal selection, 
nor to the manner in which physically similar systems 
were collected prior to the onset of the series of measure­
ments. Clearly, in our universe no such "retrodiction 
theory" would be valid: Suppose we constructed a 
monochromatic and well-collimated beam of particles 
possessing nonzero spin, performed some observation 
referring to the spin distribution of the beam, and then 
followed up with a Stern-Gerlach experiment singling 
out those particles in the beam being in a very definite 
spin state. Suppose we ask for the percentage of par­
ticles, from among those passing the postselection test, 
that had specified outcomes in the antecedent experi­
ment (which should refer to an observable not possess­
ing the specified final state as an eigenstate); surely 
these probabilities would not be independent of the 
state of polarization of our beam prior to the per­
formance of the first experiment. 

We conclude, therefore, that in order to recover the 
conventional prediction statement from the time-
symmetric fonnulas of Sec. I I , we must adopt a 
postulate that is logically independent of the time-
symmetric theory; the postulate that in our universe 
ensembles chosen on the basis of an initial complete 
measurement alone possess unambiguous and repro­
ducible probability characteristics. Once we adopt this 
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postulate the conventional prediction formulas (2.1), 
(2.3) follow from the time-symmetric formula (2.4) 
and from the considerations of Sec. I I I . We found in 
that section that there are ^^coherence destroying" 
procedures that make the ''prediction" expressions (2.6) 
independent of the particular postselection we choose 
to perform. But if there are methods by which we can 
make our probabihties independent of the manner of 
postselection and if, by our new postulate, there exist 
unambiguous probabihties even in the absence of any 
postselection, then these two sets of probabilities should 
be equal. 

Logically, it is conceivable that the time reverse of 
our new postulate should also hold; this would mean 
that postselection alone results in an ensemble with 
well-defined and reproducible probability character­
istics. Actually we know that in our universe this 
proposition is untrue. We are thus confronted with an 
indubitable asymmetry in time direction. I t remains 
to discuss whether this asymmetry is a property of 
microphysics proper or whether it represents the 
intrusion of the macroscopic universe on the micro­
scopic scene. Granting that this question does not lend 
itself to straightforward logical analysis, it appears to 
us that the construction of ensembles in the real 
physical universe is a macroscopic operation and that 
it depends on the realities of the universe as a whole. 
Let us return once more to our beam of particles 
endowed with spin. 

If we attempt to analyze the different manner in 
which past and future histories affect its present 
characteristics, we find that no matter how we gather 
our beam, its constituent particles have come from one 
or several ^'sources" (e.g., a laboratory device, a distant 
galaxy, etc.), which determine its properties; there 
simply is no way of avoiding preselection completely. 
On the other hand, beams are not collimated toward 
a "sink," unless we arrange it so in our laboratory. This 
asymmetry is directly associated with the fact that the 
origins of all kinds of radiations in the universe are 
spatially and temporally concentrated, and their 

destinations are not. The nature of ensembles or beams 
actually occurring in nature is, in fact, macroscopic, 
not microscopic; it is determined by the same cause as 
all macroscopic irreversibility, conceivably by the 
expansion of the universe.^ 

As for the microscopically determined aspects of 
quantum measurements, we believe that they can be 
fairly summarized by the statement that in time-
symmetrically constructed ensembles the laws of proba­
bility are also time symmetric; further, that to the 
extent that retrodiction situations may be said to exist, 
they obey the same laws as the corresponding prediction 
situations. 
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